References
Kaynaklar
[1]Shen M, Zhou Y, Ye J, AL-maskri AAA, Kang Y, Zeng S, et al. Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal 2020:97–101. https://doi.org/10.1016/j.jpha.2020.02.010.
[2]Fields BN, Knipe DM, Howley PM, Griffin DE. Fields’ virology. Philadelphia: Lippincott Williams & Wilkins; 2001.
[3]Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin- converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426(6965):450–4.
[4]Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin.
BioRxiv 2020. https://doi.org/10.1038/s41586-020-2012-7.
[5]Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011;85(9):4122–34.
[6]Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 Spike-host cell receptor GRP78 binding site prediction. J Infect 2020:554–62. https://doi.org/ 10.1016/j.jinf.2020.02.026.
[7]Haasnoot J, Berkhout B. RNAi and cellular miRNAs in infections by mammalian viruses. In: Antiviral RNAi. Springer; 2011. p. 23–41.
[8]Peele KA, Chandrasai P, Srihansa T, Krupanidhi S, Sai AV, Babu DJ, et al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: a computational study.
Inf Med Unlocked 2020:100345.
[9]Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science 2020;80–.
[10]Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010;84(24):12658–64.
[11]Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011;85(2): 873–82.
[12]Chu H, Chan C-M, Zhang X, Wang Y, Yuan S, Zhou J, et al. Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. J Biol Chem 2018;293(30):11709–26.
[13]Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res 2020:537–40. https://doi.org/10.1002/ddr.21656.
[14]Hulo C, De Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, et al.
ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 2011;39(suppl_1):D576–82.
[15]Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014;42(D1):D68–73.
[16]Zhu Y, Qiu P, Ji Y. TCGA-assembler: open-source software for retrieving and processing TCGA data. Nat Methods 2014;11(6):599–600.
[17]Coordinators NR. Database resources of the national center for biotechnology information. Nucleic Acids Res 2017;45(Database issue):D12.
[18]Ison J, Rapacki K, M´enager H, Kalaˇs M, Rydza E, Chmura P, et al. Tools and data services registry. Nucleic Acids Res 2015. https://doi.org/10.1093/nar/gkv1116.
[19]Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PloS One 2018;13(10).
[20]Tong Z, Cui Q, Wang J, Zhou Y. TransmiR v2. 0: an updated transcription factormicroRNA regulation database. Nucleic Acids Res 2019;47(D1):D253–8.
[21]Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;45 (D1):D353–61.
[22]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Genome Res 2003;13(11):2498–504.
[23]Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46(W1):W296–303.
[24]Hm berman Bank PD, westbrook j, feng z, gilliland g. Tn bhat, h. weissig, in shindyalov, pe bourne. Nucleic Acids Res 2000;28:235.
[25]Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res 2016;44(D1):D1202–13.
[26]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.
UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004;25(13):1605–12.
[27]Filimonov DA, Druzhilovskiy DS, Lagunin AA, Gloriozova TA, Rudik AV, Dmitriev AV, et al. Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biomed Chem Res Methods 2018;1(1). e00004–e00004.
[28]Maunz A, Gütlein M, Rautenberg M, Vorgrimmler D, Gebele D, Helma C. Lazar: a modular predictive toxicology framework. Front Pharmacol 2013;4:38.
[29]Qureshi A, Kaur G, Kumar M. AVC pred: an integrated web server for prediction and design of antiviral compounds. Chem Biol Drug Des 2017;89(1):74–83.